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SUMMARY

A finite volume turbulence model for the resolution of the two-dimensional shallow water equations
with turbulent term is presented. After making a finite volume discretization of the depth-averaged k–�
equations in conservative form, the q–r equations, that give stability to the process, are obtained. Wall and
inlet boundary conditions for the turbulent equations and wall conditions for the hydrodynamic equations
are discussed. A comparison between the k–� and q–r models and some experimental results is made.
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1. INTRODUCTION

The two-dimensional shallow water equations (2D-SWE) are obtained from the three-dimensional
Navier–Stokes equations by means of an average in time, an integration in depth and some
simplifying hypothesis [1], the most important of which is the hydrostatic pressure distribution,
that can be assumed when the vertical length scale is much smaller than the horizontal one. This
set of equations describes remarkably well the fluid behavior when the ratio of the depth to the
horizontal dimensions is small and the magnitude of the vertical velocity component is much
smaller than the magnitude of the horizontal velocity components, at the space and time scales of
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interest for the resolution of a given problem. This situation can be found, for instance, in the flow
in channels and rivers or tidal flows, which are the main fields of application for our work. Once
the velocity field is known, many problems of great practical interest such as the sediment flow
[2], the evolution of salt concentration in an estuary [3] or the pollutant diffusion [4] can also be
solved.

Use of the 2D-SWE has not stopped to increase during the last few decades and finite volume
discretizations have proved to be a useful tool, specially to apply these equations to unstructured
grids. Most finite volume formulations for the 2D-SWE take advantage of the analogy between
this system and the gas dynamics equations and have successfully been employed in the flow
simulation. The finite volume method (FVM) is now probably the most widespread modelling
strategy within the shallow water approximation [5] and it was the method used in our work.

2D-SWE take into account the effects of turbulence both through the frictional terms and the
diffusion-like term, which involves second derivatives. Frictional terms quantify the turbulence
effects in the vertical, while the second derivatives term quantifies the turbulent losses produced
by the horizontal mixing of momentum. This last term may not be significant in many practical
problems when we only need an estimation of energy losses. In problems in which recirculation
zones do not appear, turbulent losses can be globally evaluated by an adequate choice of the
friction coefficient. Also, in some tidal flows, the influence of turbulence in the mean-velocity field
can be almost negligible [6]. For these reasons 2D-SWE are frequently used without considering
the second derivatives (turbulent) term, either using first-order schemes [7, 8], second order [9, 10]
or both first and second order [11, 12]. This simplification is reasonable in many cases but not
always. Thus, in the simulation of flows in which recirculation zones play a significant role, the
inclusion of this turbulent term may become very important.

When applying the FVM to the 2D-SWE, the numerical flux at the cell edges has to be
calculated and the upwinding of the convective term has proved to be a useful technique [7, 8, 12].
Unfortunately, first-order upwind discretizations produce an amount of numerical viscosity (or
diffusion) which in some cases may be of similar magnitude to the turbulent viscosity and can
make it difficult to appreciate the effect of the turbulent term [13]. Among the authors using
the 2D-SWE with turbulent term, Cea et al. [6] propose an hybrid algorithm (first order for the
depth, second order for the velocity components) and Anastasiou et al. [14] use a second-order
method. However, probably for the above reason, references of first-order methods, such as the
one presented here, applied to these equations, have not been found.

The two-dimensional study of viscous fluids with Reynolds numbers below 10 000 can be very
accurately solved by the utilization of constant values for the viscosity � in the turbulent term [13],
but in most cases of practical interest it is necessary to calculate the turbulent viscosity at every
point, and a turbulence model is therefore needed. The well-known k.� model has been used to
obtain the turbulent viscosity by many researchers. The two-dimensional version of this model
was obtained in the late 1970s by Rastogi and Rodi [15] from the Launder and Spalding three-
dimensional model [16] and it was applied by [17, 18] with slight differences in the equations. More
recently, it has been used by [4, 6, 19–21]. In these last cases the time derivatives of the turbulent
variables are considered and discretized. It allows to know the time evolution of the variables and
this approach has been followed. The implementation of the model is not straightforward, among
other reasons because non-physical negative values can appear for the k and � variables, causing
instabilities and eventually stopping the process. As it will be shown, the q.r system is derived
from the k.� system with the aim of giving stability to the process and both approaches produce
similar results. In this work the conservative form of the k.� and q.r equations will be used.
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In this paper we compare the performance of these two models, we check the computed results
with experimental measures and we discuss some boundary conditions. The work is distributed
as follows. In Section 2 the hydrodynamic equations are presented and their discretization is
summarized. In Section 3 the k.� equations in conservative form are discretized. In Section 4
the q.r equations are obtained. Some boundary conditions for the hydrodynamic and turbulent
equations are discussed in Section 5 as well as a method to calculate the friction velocity. In
Section 6 a comparison is made between the results of the k.� and the q.r models and some
experimental measures.

2. THE HYDRODYNAMIC EQUATIONS

2.1. The shallow water equations with turbulent term

The 2D-SWE system in conservative form is expressed as

�U
�t

+ �F1

�x
+ �F2

�y
=G (1)

being the vector of unknowns U and the flux terms

U=

⎛⎜⎜⎝
h

hu

hv

⎞⎟⎟⎠ , F1=

⎛⎜⎜⎝
hu

hu2+ 1
2gh

2

huv

⎞⎟⎟⎠ , F2=

⎛⎜⎜⎝
hv

huv

hv2+ 1
2gh

2

⎞⎟⎟⎠ (2)

and being the source term

G=

⎛⎜⎜⎝
0

gh(S0x −S f x )+St1

gh(S0y−S f y)+St2

⎞⎟⎟⎠ (3)

in which both the Coriolis and the wind stresses terms have been neglected. The reason is that the
Coriolis term has little significance when applied to small domains and the wind term influence is
not relevant in some situations such as indoor laboratory channels. In the above expressions h is
the fluid depth, u and v are the horizontal velocity components and g is the gravity acceleration.
The geometric slopes S0x , S0y are expressed in terms of H (see Figure 1) as

S0x = �H
�x

, S0y = �H
�y

(4)

S f x , S f y are the friction slopes, whose values, according to the Manning’s formula [12, 22], are

S f x = n2u
√
u2+v2

R4/3
h

, S f y = n2v
√
u2+v2

R4/3
h

(5)
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Figure 1. Representation of the variables H and h.

where Rh is the hydraulic radius. Finally, St1, St2 are the turbulent terms

St1= �
�x

(
2�t h

�u
�x

)
+ �

�y

(
�t h

[
�v

�x
+ �u

�y

])
(6)

St2= �
�x

(
�t h

[
�v

�x
+ �u

�y

])
+ �

�y

(
2�t h

�v

�y

)
(7)

that quantify the energy dissipation due to the turbulent interactions among the particles. The eddy
viscosity �t is another unknown of the problem.

2.2. The finite volume mesh

The finite volume mesh used in this work is based on a triangular discretization of the domain
so that the nodes of the triangular mesh are used as the nodes of the finite volume mesh (see
Figure 2).

For each node I, the barycenters of all the triangles that have the common vertex I as well
as the mid-points of the corresponding edges are considered. The boundary �i of the cell Ci is
defined by these points. By �i j =AMB we represent the part of �i that is also part of � j . The
outward normal vector to �i j is gi j . The norm of gi j ,‖gi j‖, is the length of the edge and g̃i j is
the corresponding unit vector. The vector gi j can have different magnitude and direction at each

pair of segments AM and MB, thus

gi j =
{
gAMi j at AM

gMB
i j at MB

(8)

The subcell Ti j is the union of triangles AMI and MBI.
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Figure 2. Finite volume construction.

2.3. Discretization of the hydrodynamic equations

At this point we wish to integrate the 2D-SWE, what results in∫∫
Ci

�U
�t

dA+
∫∫

Ci

∇ ·FdA=
∫∫

Ci

GdA (9)

where the operator ∇ stands for (�/�x,�/�y) and F=(F1,F2). If we apply the Gauss theorem
to the flux term, it results ∫∫

Ci

�U
�t

dA+
∫

�i

F· g̃dl=
∫∫

Ci

GdA (10)

The details on the application of the FVM to the 2D-SWE, by making use of the upwind Van
Leer Q-scheme [7, 23], can be found in [13]. The discretized expression of the 2D-SWE that
corresponds to node I is

Un+1
i −Un

i

�t
Ai + ∑

j∈Ki

‖gi j‖/ni j =
∑
j∈Ki

(Ai jw
n
i j +‖gi j‖wn�i j ) (11)

in which Un
i and Un+1

i are approximations to the solution of equation (1) within each cell Ci
and at time steps tn and tn+1. Ai and Ai j are the cell and subcell areas. Ki represents the set of
neighboring nodes of I. The numerical flux /ni j is the approximation of Z=F· g̃, at �i j , j ∈Ki
and at t= tn , and it is given by

/ni j =
Z(Un

i , g̃i j )+Z(Un
j , g̃i j )

2
−cd

1

2
|Q(Un

Q, g̃i j )|(Un
j −Un

i ) (12)

where cd (0�cd�1) is a coefficient [13] whose meaning and utility are summarized next.
When working with a Roe-type scheme, like the one used here, the expression of the flux at a

cell interface can be interpreted as the sum of a centered average of the fluxes on both sides of the
boundary plus an upwinding term. This term stabilizes the system at the expense of introducing
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a certain amount of numerical viscosity (or diffusion). A way to make the model less diffusive
is to reduce the upwinding term as much as possible by using a coefficient cd . Its optimal value
is the smallest that can provide stable calculations and decreases with the mesh size. If cd =0,
the scheme is a centered one. If cd =1, there is no upwinding term reduction. In the Cavity Flow
problem, which was used to test the effectiveness of employing this coefficient, the value cd =0.03
was chosen.

Q is the jacobian matrix of Z

Q= dZ
dU

= �̃
dF1

dU
+ �̃

dF2

dU
(13)

being �̃, �̃ the components of g̃ (the subscripts i, j are implied). |Q| is defined as

|Q|=X|K|X−1 (14)

where |K| is the diagonal matrix given by the absolute values of the eigenvalues of Q and X is
the eigenvectors matrix of Q. UQ is defined by

UQ = Ui +U j

2
(15)

The numerical source, at every subcell Ti j and at time step t= tn , has two terms, as it can be
seen in (11). In the first of them, the numerical source is calculated as

wni j =(I−|Q|Q−1)Ĝ0+Ĝf (16)

where the numerical geometric slope Ĝ0 and the numerical friction slope Ĝf are

Ĝ0=

⎛⎜⎜⎜⎜⎜⎜⎝

0

g
hni +hnj

2

Hj −Hi

di j
�̃

g
hni +hnj

2

Hj −Hi

di j
�̃

⎞⎟⎟⎟⎟⎟⎟⎠ , Ĝf=
⎛⎜⎝

0

ghni (−S f x )
n
i

ghni (−S f y)
n
i

⎞⎟⎠ (17)

being di j the normal distance from I to �i j , which has different values at AMI and at MBI. It
can be noted that the numerical geometric slope Ĝ0 is upwinded [7], while the numerical friction
slope Ĝf is discretized pointwise [24], which is a widespread method to treat this term. It has
recently been proposed [25] a unified discretization of the friction term, which consists in a similar
numerical treatment of the flux, friction and other source terms in the equation. This unified
approach improves the balance among the terms of the equation and has given better results than
the pointwise discretization of the one-dimensional SWE, in cases of steady flow. However, in the
proposed two-dimensional model, we have discretized pointwise for the sake of simplicity.

In the second term, the numerical source takes the form

wn�i j =Ĝt (18)
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where the numerical turbulent slope is

Ĝt=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

�ti +�t j
2

hni +hnj
2

(
2
unxi +unx j

2
�̃+ vnxi +vnx j

2
�̃+ unyi +unyj

2
�̃

)
�ti +�t j

2

hni +hnj
2

(
vnxi +vnx j

2
�̃+ unyi +unyj

2
�̃+2

vnyi +vny j

2
�̃

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

The eddy viscosities �ti and �t j have no time indices since it has been assumed that these values
are constant at each node throughout the hydrodynamic part of the computational process (see
Section 6.1). The values unxi ,u

n
yi ,v

n
xi ,v

n
yi represent the average of the partial derivatives of u and

v, at cell Ci and at time t= tn

unxi =
(

�u
�x

)
Ci ,tn

, unyi =
(

�u
�y

)
Ci ,tn

(20)

vnxi =
(

�v

�x

)
Ci ,tn

, vnyi =
(

�v

�y

)
Ci ,tn

(21)

These average values are calculated [13] in the same way shown in Section 3.2 for the k.� variables.
Finally, the time step �t= tn+1− tn is estimated as indicated in [12] as

�t�0.5 ·min

(
Di j

(
√
u2+v2+c)i j

)
(22)

where Di j are the distances between each node I and its neighboring nodes, and 0.5 is a coefficient
to ensure stability.

Equation (11) provides a time explicit method to calculate the variables, at every node I and
at every time step, from the previous time step values at node I and its neighboring nodes. The
efficiency of the time integration scheme can be easily raised by using in (11), instead of the
Euler-type method, a higher order method (type Runge–Kutta, predictor–corrector, etc.), as shown
in [13].

3. THE DEPTH-AVERAGED k.� MODEL

The coefficient �t in the turbulent term of the 2D-SWE represents the eddy viscosity of a whole
vertical column of fluid. To determine this viscosity different turbulence models can be used. One
of them is the well-known k.� model, in which k and � are, respectively, the turbulence kinetic
energy and the dissipation rate per unit mass. The 2D-SWE are obtained from a depth integration,
therefore it seems reasonable to use the two-dimensional depth-averaged version of the k.� model
[26]. In this model, the eddy viscosity is calculated as

�t =c�
k2

�
(23)
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where k and � are given by the transport equations

�k
�t

+u
�k
�x

+v
�k
�y

= �
�x

(
�t
�k

�k
�x

)
+ �

�y

(
�t
�k

�k
�y

)
+Ph+PkV −� (24)

��

�t
+u

��

�x
+v

��

�y
= �

�x

(
�t
��

��

�x

)
+ �

�y

(
�t
��

��

�y

)
+c1�

�

k
Ph+P�V −c2�

�2

k
(25)

being

Ph =�t

[
2

(
�u
�x

)2

+2

(
�v

�y

)2

+
(

�v

�x
+ �u

�y

)2
]

(26)

and

PkV = 1√
c f

U∗3

h
, P�V =c��

c2�

c3/4f

√
c�

U∗4

h2
(27)

Ph is the production of k due to interactions of turbulent stresses with horizontal mean-velocity
gradients. Pkv and P�v are the productions of k and � due to vertical velocity gradients and are
related to the friction velocity U∗ (74), which will be calculated from the so-called ‘law of the
wall’ (see Section 5). The friction coefficient c f can be obtained as

c f = U∗2

U 2
(28)

being U =√
u2+v2.

For wide laboratory flumes, Rastogi et al. [15] adopted the value c�� =3.6. On the other hand,
Nezu et al. [27, p. 139] use for c�� the expression 1/

√
�∗, being �∗ the dimensionless depth-

averaged eddy viscosity. Taking the Prandtl–Schmidt number in the range �t =0.5.0.7, they relate
the parameter �∗ to the dimensionless diffusivity e∗ by

�∗ =e∗�t (29)

and this relationship has been used in our work. The empirical parameter e∗ may be measured from
dye-spreading experiments. According to Fischer et al. [28, p. 112], the values of e∗ in straight
uniform channels are generally in the range of 0.1–0.2; for natural streams with gradual bends
and moderate sidewall irregularities the coefficient lies in the range of 0.4–0.8 and it can increase
with sharp bends or rapid changes in geometry. In the case presented in Section 6, with a sudden
change in geometry but with a very smooth surface, a value of e∗ =0.6 has been chosen. As for
�t , Nezu et al. [27] state that the value e∗ =0.15 has been observed for laboratory flumes. Then
we have adopted for �t the value 0.5144 which, introduced together with e∗ =0.15 in Nezu et al.
formula, results in the value of c�� =3.6, taken in [15] for laboratory flumes.

The coefficients c�,c1�,c2�,�k,�� are empirical. For the first three of them the standard values
[26] have been taken. With regards to �k and ��, the proposal of Nezu and Nakagawa has been
followed. They state [27, p. 138] that the standard values of [26] were initially obtained by Launder
and Spalding [16] taking �=0.435 for the Von Karman constant and they propose to give the
value 1.2 to both constants if the usual value of 0.41 is taken for �. The values used in the present
work are shown in Table I.
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Table I. Constant coefficients in the depth-averaged k.� model.

c� c1� c2� �k ��

0.09 1.44 1.92 1.2 1.2

3.1. Conservative form of the k.� equations

To express the k.� equations in conservative form, we shall use the continuity equation

�h
�t

+ �hu
�x

+ �hv

�y
=0 (30)

Let us add equation (30) multiplied by k to equation (24) multiplied by h, and equation (30)
multiplied by � to equation (25) multiplied by h. We obtain

�(hk)

�t
+ �(hku)

�x
+ �(hkv)

�y
=hS′

1 (31)

�(h�)

�t
+ �(h�u)

�x
+ �(h�v)

�y
=hS′

2 (32)

where S′
1 and S′

2 are the source terms of equations (24) and (25), respectively. Equations (31) and
(32) represent a system of conservation laws with source term, in conservative form, that can be
written in matrix form as

�c
�t

+ �H1

�x
+ �H2

�y
=S (33)

being

c=
(
hk

h�

)
, H1=

(
hku

h�u

)
, H2=

(
hkv

h�v

)
, S=

(
h S′

1

h S′
2

)
(34)

As we shall see in Section 6.1, during the calculation of �t , the values of h,u,v are assumed to
be constant and k,� are obtained in an iterative process. We have modified, then, the Ph source
term to separate �t from the spatial derivatives of u and v. In this way, Ph is written as �t Phs and
the two components of the source term become

S1=h

[
�
�x

(
�t
�k

�k
�x

)
+ �

�y

(
�t
�k

�k
�y

)
+�t Phs+PkV −�

]
(35)

S2=h

[
�
�x

(
�t
��

��

�x

)
+ �

�y

(
�t
��

��

�y

)
+c1�c�kPhs+P�V −c2�

�2

k

]
(36)

3.2. Discretization of the k.� equations

In Section 2.3, the finite volume mesh was described and the FVM was applied to the 2D-SWE, by
using the upwind Van Leer Q-scheme. As it will be shown, the k.� system has two real eigenvalues,
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what suggested us to apply the same method when discretizing the k.� equations. The method has
been successfully used, although references of its application to the depth-averaged k.� equations
are not common in literature.

Using the ∇ operator, the integral in every cell of the k.� system in conservative form (33) can
be expressed as ∫∫

Ci

�c
�t

dA+
∫∫

Ci

∇·HdA=
∫∫

Ci

SdA, H=(H1,H2) (37)

Applying the Gauss theorem to the second term, it yields∫∫
Ci

�c
�t

dA+
∫

�i

H· g̃dl=
∫∫

Ci

SdA (38)

In the following discretizations of the flux and source terms, the hydrodynamic variables have
no time indices since they are assumed to be constant at each node throughout the turbulent part
of the computational process (see Section 6.1).

3.2.1. Time derivative. The solution of (33) is now replaced by some values cni , constant within
each cell Ci and at each time step tn . The time derivative is discretized by the Forward Euler’s
method as

�c
�t

∣∣∣∣
Ci ,tn

≈ c
n+1
i −cni

�t
(39)

whose value is constant over Ci and can be taken out of the corresponding integral in (38).

3.2.2. Flux term. In the second term of (38), the boundary �i is split into a sum of cell interfaces
�i j , j ∈Ki ∫

�i

H· g̃dl= ∑
j∈Ki

∫
�i j

H · g̃dl (40)

The scalar product Zm=H· g̃ at �i j is now upwinded, as in the hydrodynamic process, by taking
the mean value of Zm at nodes I and J plus an upwinding term as the flux through �i j . The
expression of the numerical flux is

/n�i j =
Zm(cni , g̃i j )+Zm(cnj , g̃i j )

2
− 1

2
|Q�(UQ, g̃i j )|(cnj −cni ) (41)

being in this case

Q� = �̃
dH1

dc
+ �̃

dH2

dc
= �̃

(
u 0

0 u

)
+ �̃

(
v 0

0 v

)
=
(

	 0

0 	

)
(42)

The eigenvalues of Q�,	= �̃u+ �̃v, represent the projection of the velocity vector over the normal
to the edge; they are positive if the fluid enters the cell and negative if the fluid goes out. Its value
is zero if the velocity is parallel to the edge. Matrix |Q|� is defined as in (14)

|Q|� =X�|K|�X−1
� (43)
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being X� the eigenvectors matrix of Q�. As |K|� =|	|I (I is the identity matrix), |Q|� becomes

|Q|� =
(|	| 0

0 |	|

)
(44)

and it is evaluated at UQ (15).
We are trying to calculate the flux Z� through the edge �i j , from the values of the variables

hk,h� at the nodes I and J. Now, if we take for u and v their values at UQ when calculating the
flux at I and at J, these fluxes become

Z�i =
{
hi k

n
i 	Q

hi �
n
i 	Q

}
, Z� j =

{
h j k

n
j 	Q

h j �
n
j	Q

}
(45)

If 	Q >0

|	Q |=	Q 	⇒ /n�i j =
{
hi k

n
i 	Q

hi �
n
i 	Q

}
=Z�i (46)

and if 	Q <0

|	Q |=−	Q 	⇒ /n�i j =
{
h j k

n
j 	Q

h j �
n
j	Q

}
=Z� j (47)

Otherwise

	Q =0 	⇒ /n�i j =0 (48)

This result greatly simplifies expression (41) and gives a graphic interpretation of the upwinding.
If the fluid enters the cell, the value of the variables hk and h� at �i j is their value at node J, from
which the flow comes. If the fluid goes out, the value at node I is taken.

3.2.3. Source term. To discretize the source term, an intermediate state cQ is defined by

knQ = hi kni +h j knj
hi +h j

, �nQ = hi �ni +h j �nj
hi +h j

, �ntQ = �nti +�nt j
2

(49)

where only k and � have time indices (see Section 6.1). Now the source term is split into two
parts, to treat them separately

SL =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h

�
�x

(
�t
�k

�k
�x

)
+h

�
�y

(
�t
�k

�k
�y

)
h

�
�x

(
�t
��

��

�x

)
+h

�
�y

(
�t
��

��

�y

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (50)

SR =

⎧⎪⎨⎪⎩
h (�t Phs+PkV −�)

h

(
c1�c�kPhs+P�V −c2�

�2

k

)
⎫⎪⎬⎪⎭ (51)
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To discretize the integral of SL , h is replaced by its value at node I, the Gauss theorem is applied
and the boundary �i is split into a sum of cell interfaces as in (40). Using the ∇ operator it
results in

∫∫
Ci

SL dA≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hi

∑
j∈Ki

∫
�i j

�t
�k

∇k · g̃dl

hi
∑
j∈Ki

∫
�i j

�t
��

∇�· g̃dl

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (52)

At equation (52) we need to estimate, at every �i j , the escalar product

∇k · g̃= �̃
�k
�x

+ �̃
�k
�y

(53)

Two methods for calculating the partial derivatives of u and v at the edge between two cells
have been described and compared in [13], where the better performance of the one that uses the
average values of the derivatives at cells Ci and C j has been concluded. Next the partial derivatives
of k and � at �i j are obtained by applying the same method.

Thus, to approximate the gradient at �i j of a scalar magnitude m, the mean value of its gradients
at cells Ci and C j is used. The gradient of m within Ci is estimated as

(∇m)Ci =
1

Ai

∫∫
Ci

∇m dA (54)

and the surface integral of ∇m over Ci is calculated as [29]∫∫
Ci

∇m dA=
∫

�i

m g̃dl (55)

being g̃ the unit vector normal to �i . Since

g̃= �̃ i+ �̃ j (56)

and

(∇m)Ci =
(

�m
�x

)
Ci

i+
(

�m
�y

)
Ci

j (57)

where i is the x-axis unit vector and i is the cell index, the average values of the partial derivatives
of m within Ci become(

�m
�x

)
Ci

= 1

Ai

∫
�i

m �̃dl= 1

Ai

∑
j∈Ki

∫
�i j

m �̃dl (58)

(
�m
�y

)
Ci

= 1

Ai

∫
�i

m �̃dl= 1

Ai

∑
j∈Ki

∫
�i j

m �̃dl (59)
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Then the process is summarized as follows. First, the values of k and � at �i j are estimated as
their mean values at nodes I and J. Then the partial derivatives of k and � within every cell Ci are
obtained from the estimated values of k and � at �i j by(

�k
�x

)
Ci

= 1

Ai

∑
j∈Ki

ki +k j
2

�̃‖gi j‖,
(

��

�x

)
Ci

= 1

Ai

∑
j∈Ki

�i +� j
2

�̃‖gi j‖ (60)

(
�k
�y

)
Ci

= 1

Ai

∑
j∈Ki

ki +k j
2

�̃‖gi j‖,
(

��

�y

)
Ci

= 1

Ai

∑
j∈Ki

�i +� j
2

�̃‖gi j‖ (61)

and we can obtain the value of the partial derivatives at �i j from the corresponding values of the
derivatives at Ci and C j . By expressing the average values within Ci at time t= tn as

knxi =
(

�k
�x

)
Ci ,tn

, �nxi =
(

��

�x

)
Ci ,tn

(62)

knyi =
(

�k
�y

)
Ci ,tn

, �nyi =
(

��

�y

)
Ci ,tn

(63)

and by taking the values of �t corresponding to cQ , the discretized integral of SL at �i j and at
t= tn is

ŜnLi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
hi

�ntQ
�k

(
knxi +knx j

2
�̃+ knyi +kny j

2
�̃

)

hi
�ntQ
��

(
�nxi +�nx j

2
�̃+ �nyi +�ny j

2
�̃

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(64)

To discretize the integral of SR in an analogous way, h is calculated at I and the rest of the
variables are calculated at the intermediate states UQ (for u,v) and cQ (for k,�). This results in

ŜnRi j =

⎧⎪⎪⎨⎪⎪⎩
hi (�

n
tQ(Phs)Q+(PkV )Q−�nQ)

hi

(
c1�c�k

n
Q(Phs)Q+(P�V )Q−c2�

(
�2

k

)n

Q

)⎫⎪⎪⎬⎪⎪⎭ (65)

Finally, the surface integral within Ci of the source term of (38) is approximated as∫∫
Ci

SdA≈ ∑
j∈Ki

(‖gi j ‖̂SnLi j +Ai j ŜnRi j ) (66)

3.2.4. Algorithm. Using the above described method, a discretization of equation (38) has been
obtained, which takes the form

cn+1
i −cni

�t
Ai + ∑

j∈Ki

‖gi j‖/n�i j =
∑
j∈Ki

(‖gi j ‖̂SnLi j +Ai j ŜnRi j ) (67)
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Therefore

cn+1
i =cni + �t

Ai

( ∑
j∈Ki

(‖gi j ‖̂SnLi j +Ai j ŜnRi j )−
∑
j∈Ki

‖gi j‖/n�i j
)

(68)

4. AN ALTERNATIVE: THE q.r MODEL

Both the turbulent kinetic energy and the dissipation rate are non-negative variables. If equations
k.� are discretized directly, negative values can arise, which would produce numerical problems,
besides representing a non-physical value for these variables. A way to avoid this problem is the
change of variables used by [30] in a finite element context

k=q2, �=r2 (69)

To obtain the q.r equations in conservative form, substitution (69) is used in expressions
(24)–(25). Then, after differentiating q2 and r2 in the left-hand side terms, the process described
in Section 3.1 is repeated. Thus we obtain

�c∗

�t
+ �H∗

1

�x
+ �H∗

2

�y
=S∗ (70)

As it can be seen, the above stated equations take the same form of system (33), now being

c∗ =
(
hq

hr

)
, H∗

1=
(
hqu

hru

)
, H∗

2=
(
hqv

hrv

)
, S∗ =

(
S∗
1

S∗
2

)
(71)

with

S∗
1 = h

2q

[
�
�x

(
�t2q

�k

�q
�x

)
+ �

�y

(
�t2q

�k

�q
�y

)
+�t Phs+PkV −r2

]
(72)

S∗
2 = h

2r

[
�
�x

(
�t2r

��

�r
�x

)
+ �

�y

(
�t2r

��

�r
�y

)
+c1�c�q

2Phs+P�V −c2�
r4

q2

]
(73)

These source terms have the same form of expressions (35)–(36), where (k,�) are replaced by
(q2,r2) and the two components are multiplied by 1/2q and by 1/2r , respectively. Therefore, the
discretization process of the q.r equations is analogous to that of the k.� equations.

5. BOUNDARY CONDITIONS

5.1. Calculation of the friction velocity

The friction velocity is defined [31, p. 14] in terms of the wall stress 
w and of the density � as

U∗ =
√


w

�
(74)
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It has many applications such as the obtaining of the production terms (27) as well as the calculation
of the dimensionless velocity U+ and of the wall distance y+, being

U+ = U

U∗ , y+ = yU∗

�
(75)

U is the velocity component parallel to the wall, y is the normal distance to the wall and � is the
fluid viscosity. In the vicinity of the wall, the relationship between U+ and y+ can be described
approximately by the law of the wall that reads

U+ = 1

�
ln(Ey+), 30< y+ <500 (76)

where the Von Karman constant takes the usual value �=0.41 and E=9.8 [32, p. 60]. The range
of validity for the law of the wall varies among the authors [26, 27, 31, 32]. The one proposed by
[32] has been used here.

To obtain the value of U∗ an iteration is made, once the distance y and the fluid velocity U have
been chosen. These values must be carefully selected, so that the value of y+ resulting from U∗
lies within the range of validity in most of the nodes. In our calculations, the velocity component
parallel to the boundary has been taken for U . The distance y has been estimated in order to fulfil
the range condition, resulting in a value of y=0.022, about 0.8� (� is the average mesh size at
the boundary). Taking expressions (75) for y+ and U+ and rearranging, the law of the wall can
be rewritten as

U∗ = U�

ln

(
EyU∗

�

) (77)

Then the iteration can be made by successive approximations, yielding the value of U∗. The use
of the Newton Raphson’s method has been of utility to greatly accelerate the convergence.

On the other hand, Spalding [33] (also reported in [34, 35]) obtained an alternative expression for
the law of the wall, based on Taylor series, valid for both the viscous sublayer and the logarithmic
zone,

y+ =U++e−�B
[
e�U

+ −1−�U+− (�U+)2

2
− (�U+)3

6

]
(78)

being B=5.0. This formula has also been used in our calculations. Eliminating U∗ from (75),
we have

U+ = Uy

�y+ (79)

and the iteration can be made, what yields the value of U+, from which U∗ can be calculated. In
this case the use of Newton Raphson’s method has been necessary to achieve convergence, since
the successive approximations iteration is divergent. The values obtained with Spalding’s law have
been very similar to the ones obtained with the logarithmic law. Therefore, since Spalding’s law
is valid within a wider range of distances to the wall, it has been the one chosen for our work.
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5.2. Hydrodynamic process. Wall conditions in channels

At inlet and outlet sections the usual conditions for the hydrodynamic equations are applied. If the
flow is subcritical, the discharge at the inlet and the depth at the outlet must be imposed. In order
to account for the stress at the nodes on the wall, the following four conditions, characterized by
a wall index Iw, have been considered.

(a) No-slip condition (Iw =0). The velocity at the wall nodes is set to zero. This condition
corresponds strictly to the physical problem, since the fluid particles at the wall are stopped
by it, transmitting to the neighboring ones the effect of the wall. To properly apply this
condition a very fine mesh near the wall would be needed, so as not to distort excessively
the velocity field, and this would make the solution computationally expensive. The no-slip
condition is usually employed when studying the cavity flow problem.

(b) Slip condition (Iw =1). The velocity component normal to the wall is set to zero. It is a
useful condition when friction at the wall has not to be accounted for, as it is the case in
many one-dimensional problems.

(c) Friction condition (Iw =2). The velocity component normal to the wall is set to zero and
the friction effect of the wall is considered by using the following expression [29] for the
hydraulic radius

Rh = Abh

Ab+Aw

= h

1+Aw/Ab
(80)

where Ab represents the cell area and Aw the wall area corresponding to the cell (see
Figure 3). In this way the value of the hydraulic radius is reduced according to the importance
of the lateral surface with respect to the bottom surface, thus increasing the friction terms
S f x and S f y (5). Brufau et al. [12] have proposed another expression to take into account
the side walls effect with the possibility of giving different values to Manning’s coefficient
at the walls and the bottom.

(d) Friction velocity condition (Iw =3). The velocity component normal to the wall is set to
zero and the stress at the wall is calculated from (74) as

sw =−�U∗2t (81)

being t the unit vector tangent to the boundary in the flow direction.

To compare the four above described conditions, some measurements were made at the
Hydraulics Laboratory of the Civil Engineering School of A Coruña. The installation was a
model of a channel 0.5m wide, with a length of about 3.8m. This model reproduced a real
channel existing at the power station of As Pontes de Garcı́a Rodrı́guez (A Coruña, Spain). After
a bend the channel splits into three different branches (clockwise numerated as 1, 2, 3) each one
having a step 0.123m high. The triangular mesh, with 3423 nodes, was generated by using a
commercial code [36]. The size of the triangles sides is about 3 cm long. The imposed conditions
in the numerical simulation were: at the inlet, a discharge of 42.4l/s and, at the three outlets, the
measured depth of 0.1m. The bottom friction effect was estimated by Manning’s formula in the
four cases. The initial conditions were: fluid at rest and a horizontal free surface, determined by
the fixed depth of 0.1m after the step. The velocity field and streamlines are depicted in Figure 4.
Once the steady flow was reached, the depth and velocity field were obtained in the four cases. It
was observed that the discharges at the three outlets varied significantly with the wall condition
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Figure 3. Wet wall area in a boundary cell.

Figure 4. As Pontes channel. Velocity field.

Table II. Comparison of wall conditions. Discharges in l/s.

Computed discharges Qci
Measured

discharges Qmi Iw =0 Iw =1 Iw =2 Iw =3

Outlet 1 13.27 16.24 13.51 13.66 13.68
Outlet 2 14.84 15.14 14.98 15.08 14.77
Outlet 3 14.24 10.83 13.25 13.69 13.90∑

Qi 42.35 42.21 41.74 42.43 42.35
� — 2.616 0.594 0.413 0.310

employed. The computed results Qci and the experimental measures Qmi are shown in Table II.
The sum of the three partial discharges and the deviation

�=
√

3∑
n=1

(Qci −Qmi )2

3
(82)

of the computed discharges with respect to the measured ones are also presented. The closest
results to the measures were obtained for Iw =3. This has been the wall condition applied in
Section 6.
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5.3. k.� process. Boundary conditions in channels

5.3.1. Inlet condition. The amount of turbulence that enters the domain depends on the processes
previously underwent through by the fluid. The most adequate inlet condition would be of Dirichlet-
type, measuring k experimentally and obtaining � from other turbulent quantities. Usually these
values are not known and have to be estimated, while the computational domain must be extended
to get the zone of interest away from the inlet, in order to minimize its influence. Fortunately this
influence is not strong [37], specially when a great amount of turbulence is generated inside the
domain. Nezu and Nakagawa [27, pp. 54, 77] propose, for the vertical distribution of k and � far
from the walls in a laboratory channel, the following expressions

k(z)=4.78U∗2e−2z/h, �(z)=E1
U∗3

h

√
h

z
e−3z/h (83)

with E1=9.8 for Re between 104 and 105. Depth-averaging the first expression we obtain

k= 1

h

∫ h

0
k(z)dz=4.78U∗2 e2−1

2e2
=2.06655U∗2 (84)

The expression for �(z) has no primitive and has to be calculated numerically, yielding

�= 1

h

∫ h

0
�(z)dz= E1U∗3

h

∫ h

0

e−3z/h

h
√
z/h

dz=1.008687
E1U∗3

h
(85)

These expressions can also be used to estimate the initial values unless other more adequate values
are available (e.g. results from a previous calculation).

5.3.2. Wall and outlet condition. Conditions very common in the literature [26, 27, 32, 38] have
been adopted. They are of Dirichlet-type at the walls

k= U∗2
√
c�

, �= U∗3

�y
(86)

and of Neumann-type at the outlet

�k
�n

=∇k ·n=0,
��

�n
=∇� ·n=0 (87)

where n and n represent the outward normal direction and the unit vector, respectively.

6. EXPERIMENTAL VALIDATION

6.1. Separation of hydrodynamic and turbulent processes

Both the 2D-SWE and the k.� system are composed of transport equations and have the same
structure, but they represent different phenomena with different time scales and variables. Besides,
the k.� equations have a number of empirical coefficients, some of them problem-dependent.

For these reasons we have proceeded cyclically, as it is suggested in [39, p. 269]. With an
initial uniform value for the viscosity, the distribution of velocities and depths is calculated in an
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iterative process (hydraulic phase), according to expression (11), until a steady state is reached.
Then, starting from the values of u,v and h at every point, the distribution of �t is obtained, in
another iterative process (k.� phase), according to expression (68). Then, again the distribution of
velocities and depths is calculated, and so on. In each phase, the steady state is assumed to be
reached when the difference between the values of each variable in two successive time steps is
below a certain tolerance. The combination of the k.� phase and the subsequent hydraulic phase
is said to be a cycle. The calculations end when convergence is achieved in the first iteration, in
the hydraulic phase of a cycle.

If the initial uniform value for �t is small, the resulting velocities are high. Therefore, the
turbulent viscosities calculated in cycle 2 are also high and the velocities calculated with it are
very small. For this reason, in cycle 3, the calculated viscosities are again small what produces a
rise in the values of the corresponding velocities, and so on. In this way, oscillations in the levels
of viscosity and velocity are produced and the convergence to the steady state is very slow.

A practical method to reduce the number of required cycles is to limit the number of iterations
in each phase. The first cycles are stopped without reaching the steady state in any of the phases
and the resulting viscosity values are generally smaller than the converged value. However, since
these values are properly distributed through the domain, in a few cycles the steady state is reached
in both phases. This results in a significant computational saving.

6.2. Measurement of the turbulent kinetic energy

The experimental data were obtained at the Hydraulics Laboratory of the Civil Engineering School
of A Coruña with SONTEKMicro Acoustic Doppler Velocimeters that produce a small distortion of
the velocity field. They are highly accurate (10−3m/s) and they take between 80 and 250 measures
per second. As the output values have a maximum frequency of 50Hz, every one represents an
average of several measures. In our case, 2500 values of the velocity components were obtained
at every point, in a period of 100 s. The measures were taken at a distance from the bottom of
z=9.36cm, at 368 points.

The system gives the three mean velocities u,v,w and the three standard deviations �x ,�y,�z .
Since the model is two-dimensional we only have taken into account the x and y deviations, what
seems more coherent with the previous hypothesis. The experimental measure of the turbulent
kinetic energy is then obtained as

k= 1
2 (�

2
x +�2y) (88)

6.3. Description of the installation and boundary conditions

The experimental domain consisted of a horizontal channel made of glass with an abrupt expansion,
commonly known as backward facing step. The dimensions can be seen in Figure 5. A numerical
mesh of 3321 nodes (Figure 6) was generated [36]. The applied boundary conditions were [40]

• Upstream: The discharge, Q=20.2l/s, was imposed.
• Downstream: The measured depth, h=24.2cm, was imposed.
• Walls: the condition (81) was applied.

When 2D-SWE are used without the turbulent term, it is assumed that the turbulent energy
losses are globally accounted for by means of the friction coefficient. As we do consider turbulent
effects, a reduced value of n=0.008 was chosen instead of the estimated for the channel, that
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Figure 5. Dimensions of the domain.
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Figure 6. Triangular mesh.
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Figure 7. Simplified model. Streamlines. General view.

would be n=0.010.0.012 [41]. In any case, the observed influence of the value of n on the results
was very small.

6.4. Results

First the model was applied without taking into account the turbulent term and without reducing
the numerical diffusion, by giving a value of 1 to the cd coefficient in expression (12). The results
are shown in Figure 7. We call this the simplified model and it has proved to be reliable in 1D
tests [29] but, in the described case, the reattachment length is too short, although the eddy after
the step is reproduced.

Then the k.� and q.r models were used with cd values of 0.05 and 0.04, respectively. The
smaller value of cd in the q.r model can be used because of the superior numerical stability of
this model with respect to the k.� and it is meant to produce a further reduction in the numerical
diffusion. The streamlines obtained with both of them are very similar from each other and close
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to the experimental measures. The q.r results are presented in Figure 8 in a general view. The
k.� results are presented in Figure 9 in an enlarged view, in order to compare them with the
experimental results (Figure 10). In Figure 9, only one out of four vectors are plotted, in the x-
direction. We notice that these models calculate the reattachment length very accurately, although
it has been said [42] that the k.� model tends to underpredict it by a rate of 20–25%.

The results for k are shown in Figures 11–13. The levels are well predicted by both models,
but the position is not so accurately assessed. The zone of maximum values is displaced a little
downstream, specially in the k.� model. The q.r zone for k values over 0.075m2/s is a little
wider than in the experimental measures. Due to the simplifying hypothesis made for the walls,
both models fail to reproduce the high k levels near the right wall of the channel.

The q.r model has been implemented to avoid numerical instabilities. In order to compare the
efficiency in using the q.r or k.� models when no instabilities appear, three x-sections of the eddy
zone are shown in Figures 14–16. It can be seen that the performance of the simplified model in
the presence of eddies is poor. Both the k.� and q.r models improve significantly the predicted
values of u, the first of them giving slightly more accurate results.
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Figure 8. q.r model. Streamlines. General view.
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Figure 9. k.� model. Streamlines and velocity vectors in measurements zone.
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Figure 10. Experimental measures. Streamlines and velocity vectors.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:177–202
DOI: 10.1002/fld



198 J. FE ET AL.

X

Y

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

k: 0.0025 0.005 0.0075 0.01 0.0125 0.015

Figure 11. q.r model. Turbulent kinetic energy in measurements zone.
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Figure 12. k.� model. Turbulent kinetic energy in measurements zone.
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Figure 13. Experimental measures. Turbulent kinetic energy.

This case was computed in 2007 in a Compaq Alpha AXP ES/40 server running True64 Unix
with the Compaq FORTRAN 90 compiler. It took about 80min to complete the analysis. The same
analysis can be performed in 2008 in about 13min, in a departmental server type Dell PowerEdge
2950 with a Intel Xeon 5150 processor and the Intel FORTRAN Compiler for Linux 9.0.

The presented examples were compared with results obtained for an increased level of mesh
refinement (12 881 nodes instead of 3321). In our experience, increasing the number of computa-
tional nodes was needless, since the results (at the scale of the whole mesh) were not noticeably
improved while the computational cost was much higher (about 8 times, what agrees with the
theoretical prediction). Thus we conclude that a moderate level of mesh refinement can be sufficient
to obtain quite accurate results in practice, with a reasonable computational effort. It seems that
increasing the mesh refinement level is only justified when highly accurate results are required for
a limited part of the whole domain.
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Figure 14. Velocity component u in the eddy zone. Section x=1.53m.
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Figure 15. Velocity component u in the eddy zone. Section x=2.03m.
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Figure 16. Velocity component u in the eddy zone. Section x=2.53m.
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7. CONCLUSIONS

Two depth-averaged turbulence models, q.r and k.�, and their discretization have been described
and their performance has been compared with experimental results. Both produce a remarkable
improvement with respect to the simplified model (that does not consider the turbulent term) in
presence of eddies. The q.r model, developed as a modification of the k.� to improve stability, has
given similar results to the k.� model in the estimation of the k levels and it has more accurately
predicted the position of the maximum values of k. On the other hand, its estimation of the velocity
values has been slightly less accurate than the one made by the k.� model. Both models have
correctly calculated the position and length of the eddy.

A comparison of four wall boundary conditions for the hydrodynamic equations has been made,
concluding that the better performance corresponds to the one that involves the velocity friction
at the wall. An iterative method to calculate the friction velocity with two different formulae is
proposed. Two depth-averaged expressions to estimate the k and � inlet conditions in a channel
have been obtained.

The technique herein presented can be applied to both structured and unstructured meshes.
The results, obtained with the proposed first-order models, can be considered very satisfac-

tory. Some improvements could be expected if higher order methods were used, although the
computational cost should also be higher.
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the transport of salinity in estuaries. International Journal for Numerical Methods in Fluids 2008; 56:507–523.

4. Bonillo J, Puertas J, Fe J, Vellando P. A 2D numerical model for the transport of pollutants. The influence of
boundary conditions. 3rd International Symposium on Ecohydraulics, Salt Lake City, UT, 1999.

5. Alcrudo F. A state of the art review on mathematical modelling of flood propagation. Report of the Investigation of
Extreme Flood Processes and Uncertainty (IMPACT). Available on the web at: www.samui.co.uk/impact-project/.

6. Cea L, French JR, Vázquez-Cendón ME. Numerical modelling of tidal flows in complex estuaries including
turbulence: an unstructured finite volume solver and experimental validation. International Journal for Numerical
Methods in Engineering 2006; 67:1909–1932.
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con incorporación de los esfuerzos debidos a la turbulencia. Ph.D. Dissertation (in Spanish), University of A
Coruña, 2005. Available on the web at: http://www.tesisenred.net/.

30. Finnie JI, Jeppson RW. Solving turbulent flows using finite elements. Journal of Hydraulic Engineering 1991;
117(11):1513–1530.

31. Wilcox D. Turbulence Modelling for CFD. DCW Industries, Inc.: La Cañada, CA, 2002.
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